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Naturally generated ambient noise in the ocean is created by breaking waves, spray
and precipitation. Each of these mechanisms produces a pulse of sound that
propagates down into the depths of the ocean, and the superposition of all such
pulses from across the whole sea surface constitutes the ambient noise field. Since the
noise is a stochastic phenomenon, its properties are described in terms of statistical
quantities, the most useful being the power spectral density at a point and the cross-
spectral density between two points in the field. If these second-order statistical
measures are independent of absolute position, the noise field is said to be spatially
homogeneous.

In the rare case of an isovelocity, deep ocean, the noise field at depths greater than
a wavelength or so beneath the surface is spatially homogeneous, consisting of a
random superposition of plane waves. A non-uniform sound speed profile, however,
introduces wave-front curvature which modifies the situation significantly : the noise
exhibits strong spatial homogeneity over length scales that are comparable with the
apertures of typical acoustic arrays. Apart from the implications with regard to
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322 M. J. Buckingham

array performance, this is important in connection with certain aspects of acoustical
oceanography, whereby information on the oceanographic environment is extracted
from the noise field (Buckingham et al. 1992). Such information is accessible only if
the structure of the noise field is well understood.

The problem lies in determining the spatial and spectral properties of the noise in
a profile. Fundamental to the noise analysis is the Green’s function for the channel,
which characterizes the propagation conditions; and yet for most non-uniform sound
speed profiles the analysis of the Green’s function is intractable. However, there is
one profile, designated the inverse-square profile, for which a complete, exact
solution for the field has been developed (Buckingham 1991). The inverse-square
profile is monotonic increasing with depth, giving rise to upward refractive
propagation. Such a profile is found in several ocean environments: the polar oceans,
where the temperature and hence the sound speed show a minimum at the surface;
the mixed surface layer, extending to a depth of order 100 m in the open ocean; and
the ocean-surface bubble layer, occupying the first ten metres or so beneath the
surface.

An analysis of the noise field in the presence of an inverse square profile, based on
the solution for the Green’s function, shows that the cross-spectral density of the
noise in the vertical consists of three components: a normal mode sum, representing
noise originating largely in distant sources; a direct path contribution, from sources
that are more or less overhead; and a near-surface term that is negligible at depths
greater than a wavelength. In the theoretical noise spectrum, the normal mode and
direct path components are prominent, dominating, respectively, at low and high
frequencies. The cross-over frequency depends on the parameters of the profile and
attenuation in the medium, but for polar oceans is in the region of several hundred
hertz. At a much lower frequency, around 10 Hz, where the polar profile ceases to
support normal mode propagation, a minimum appears in the theoretical spectrum.
This is the result of a very rapid fall off in the normal mode component of the noise
and a slow rise of the direct path component with decreasing frequency.

Each of the three components of the vertical cross-spectral density exhibits strong
spatial inhomogeneity. This is exemplified by the dramatic dependence of the cross-
spectrum on both the mean depth of the sensors and frequency. Although such
behaviour adds complexity to the structure of the noise field, this could be
advantageous since it allows the possibility of performing inversions on noise cross-
spectral data to determine properties of the medium.

Recent measurements of low-frequency (50-2000 Hz) and very low-frequency
(5-200 Hz) ambient noise spectra in the marginal ice zone of the Greenland Sea,
where the sound speed profile is of the inverse-square form, have been compared with
the predictions of the new noise theory. There is evidence in the measured spectra
that both the normal mode and direct path components of the noise are present with
the predicted relative levels. A minimum around 10 Hz is a ubiquitous feature of the
VLF spectra, and the LF spectra show a change of slope close to 400 Hz, both of which
are in accord with the theory. Along the ice edge a highly non-uniform (spatial)
distribution of energetic sources is known to be present, whose effects in the observed
spectra are consistent with arguments developed from the inverse-square noise
analysis.

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 1. The upward refracting inverse-square profile, with depth normalized to the profile
parameter » and sound speed normalized to the asymptotic value c.

1. Introduction

Several sea-surface processes, notably wave breaking and precipitation, generate
pulses of sound which propagate down into the depths of the ocean. At any point in
the ocean, the superposition of all such transient acoustic arrivals from everywhere
on the sea surface constitutes the natural, sea-surface generated ambient noise field
at that point. Other sources of sound in the ocean, including surface shipping, off-
shore drilling activities and marine mammals, also contribute to the ambient noise
field (Knudsen et al. 1948; Wenz 1962; Urick 1983). Such sources are more localized
than the natural surface processes and are excluded from the following discussion,
which concentrates on the ambient noise field generated by widely distributed
natural sea-surface sources.

Considerable attention has been paid to the detailed physical mechanisms whereby
sea-surface sources produce sound. Two recent conferences have addressed the issue,
one held at Lerici, Italy, in June 1987 (Kerman 1988) and the second at Downing
College, Cambridge, U.K., in July 1990 (Kerman 1993). There is now little doubt
that oscillating bubbles, created by waves and other processes, are responsible for
much of the sound naturally generated at the sea surface. This conclusion is
consistent with early work by Minnaert (1933), who was the first to establish, from
a series of elegant experiments in which individual air bubbles were released from an
underwater nozzle, that a bubble oscillating in the radial‘breathing’ mode is a very
efficient radiator of sound.

By comparison with the efforts applied to understanding sea-surface sources,
relatively little has been done in the way of modelling the effects of the acoustic
propagation conditions on the noise field. Cron & Sherman (1962, 1965) developed a
model for the spatial coherence of surface-generated noise in a semi-infinite isovelocity
ocean; and Buckingham (1980), 1981) derived the spatial coherence of the noise in

Phil. Trans. R. Soc. Lond. A (1994)
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a shallow isovelocity channel overlying a fast fluid sediment (i.e. a Pekeris (1948)
channel). It transpires from this analysis that the noise in shallow water exhibits a
modal structure, with the vertical directional density function consisting of discrete
noise ‘rays’ whose grazing angles match those of the eigenrays associated with the
modes. Buckingham (1985) subsequently extended his shallow-water arguments to
the case of ambient noise in a wedge-shaped isovelocity ocean with pressure-release
boundaries.

A theoretical treatment of the cross-spectral density of ambient noise in the
presence of a non-uniform sound speed profile was developed by Kuperman &
Ingenito (1980). Their expression for the cross-spectral density of the noise at two
points in the field, derived from a wave-theoretical argument, is formulated as an
integral involving the product of two Green’s functions. This integral form is valid
for the case of a stratified ocean, in which the sound speed profile may vary with
depth but not horizontal range. Kuperman & Ingenito (1980) evaluate their integral
numerically, using a fast field program (rrp), and show that the sound speed profile
can strongly influence the spatial coherence of the noise. It is also evident from their
results that, in general, the ambient noise field in an ocean with a non-uniform profile
is spatially inhomogeneous, showing second-order statistical measures that depend
on the absolute position at which they are observed.

In the present work, an analytical model giving the vertical coherence of surface-
generated ambient noise is developed for a semi-infinite, horizontally stratified ocean
with an upward refracting, inverse-square sound speed profile. Such a profile,
illustrated in figure 1, is described by the expression

¢ 2z) = c {1+ h%/2?}, for z=2z,>0, (1)

where ¢, is the asymptotic sound speed approached in the limit of infinite depth, A
is a parameter which specifies the effective depth of the profile in terms of the number
of modes that it supports, and ¢(z) is the sound speed at depth z measured from an
origin at a distance z, above the surface. (The origin of the depth coordinate, z, is
placed above the surface to prevent the sound speed from falling to zero on the
surface.) For a given value of ¢, prescribed values of the sound speed and sound
speed gradient at the surface may be achieved by a judicious choice of £ and z,. The
inverse-square profile, which is monotonic increasing with depth, is representative of
the polar oceans (Kuperman 1988), the surface sound channel, and the bubble layer
formed immediately below the sea surface by the action of breaking waves (Farmer
& Vagle 1989).

An important component of any ambient noise model is the Green’s function for
the acoustic field in the channel. Recently, Buckingham (1991), referred to hereafter
as I, derived the Green’s function for the inverse-square profile by applying two
Hankel transforms (over horizontal range and depth) to the Helmholtz equation. His
final expression for the field consists of a sum of normal modes plus a branch line
integral. An alternative formulation of this solution, derived as an intermediate step
in 1, is the integral form

. ’ ® H(l) 2 ’ ’

6= v 6) [t L ) B ) H ) HY 00 ) O,
0 " S

for z=2, (2

where ¢ is the harmonic velocity potential (with source strength of unity), z and 2’

Phil. Trans. R. Soc. Lond. A (1994)
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On surface-generated ambient noise 325

are the depths of the receiver and source below the origin (not the sea surface),  is
horizontal range between source and receiver, j = 4/ — 1, and the integration variable
p is the horizontal wavenumber. The functions Jy(.) and H?(.) are, respectively,
the Bessel function of the first kind of order zero and the Hankel functions of the first
and second kind of order x; and the two variables # and u are defined as follows:

1= (k3% —p%), 3)
= G—k5h*), (4)
where k,=w/c, (5)

is the wavenumber at infinite depth and w is angular frequency. The solution in (2)
satisfies reciprocity, since z and 2’ are interchanged for a source/receiver configuration
such that z < 2’ (which is not relevant to the analysis of surface-generated noise).

The expression in (2) forms the basis of the following ambient noise analysis. To
begin, a brief introduction te the statistical properties of random pulse trains is given
in §2, followed by an analysis of the vertical cross-spectral density function of noise
in the inverse-square profile in §3, §4. The theory is evaluated in §5 for the marginal
ice zone (M1z) of the Greenland Sea, where, with an appropriate choice of parameters,
the observed sound speed profile is accurately fitted by the inverse-square form. A
comparison of the theoretical spectra with measured very-low-frequency (< 200 Hz)
and low-frequency (50 Hz to 2 kHz) noise spectra from the M1z is made in §6, where
several features observed in the experimental spectra are interpreted on the basis of
the theory.

2. Random pulse trains

Ambient noise in the ocean, like many other stochastic processes, originates in a
very large number of independent discrete random ‘events’. In the case of surface-
generated oceanic noise, each event could be the breaking of a wave, which produces
a bubble cloud and an associated acoustic signature. The superposition of all such
acoustic pulses from the whole sea surface constitutes the surface-generated ambient
noise field in the ocean. Over an observation interval that is shorter than the
timescale of changes in sea surface conditions (arising, for example, from a varying
wind vector), such a wave train is statistically stationary, with well-established
second-order statistical measures.

Suppose that the acoustic arrival at a receiver from a single event within an
elemental surface area dA4 is described by a pulse shape function g(¢), where causality
is satisfied by requirement that g(f) = 0 when ¢ < 0. It is convenient to assume that
all the sources are point impulses (i.e. delta functions in space and time), in which
case g(¢) is the Green’s function of the field at the receiver. Because the profile is
dispersive, the pulse arrivals at the receiver undergo some degree of broadening, that
is, g(?) is not a delta function. Since all events occurring within d4 share a common
propagation path, they generate a noise wave-form at the receiver given by the
random superposition

K
x(t) = ,E apg(t—1ty), (6)

where a, and t, are the amplitude and time of arrival, respectively, of the kth pulse,
and K is the number of pulses arriving within the observation interval 7'. The
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326 M. J. Buckingham

statistical properties of the random pulse train xz(t) are derived on the assumptions
that the summation converges and that the pulse shape function takes appreciable
values for a time that is very much less than the observation time, 7'.

Since the pulses occur randomly, the pulse arrivals are Poisson distributed in time
with a probability density function equal to 1/7'. It follows (Buckingham 1983) that
the (unilateral) power spectral density of x(¢) from the element of surface area d4 is

d<S(w)y = 2p<a®) |G (jw)|* d4, (7)

where the symbol {.) denotes an ensemble average, (a®) is the mean-square value
of the pulse amplitudes (the a, in (6)), G(jw) is the Fourier transform of the Green’s
function g(¢), p is the mean rate of events per unit area, and

pdd = lim (K/T). (8)
T-00
Equation (7), known as Carson’s theorem (Rice 1944, 1945), indicates that, apart
from a scaling factor, the spectrum of the random pulse train x(t) is just the spectrum
of the deterministic Green’s function g¢(t). It is implicit in (7) that the process has a
zero mean, otherwise a delta function at zero frequency would be included as an
additive term on the right.

Carson’s theorem is easily generalized to give the cross-spectral density between
the noise fluctuations at a pair of sensors due to random events occurring within the
elemental surface area d4. If, from the same event, ¢,(t) and g,(f) are the Green’s
functions at receivers 1 and 2 (figure 2), then the corresponding noise wave forms at
the two receivers due to the random succession of events within d4 are given by the
superpositions

A, g, (E—1ty) 9)

and Zo(t) = X a,gy(t—1t;). (10)
Although the pulse arrivals ¢,(¢) and g¢,(f) have a common source, they are not
necessarily the same since receivers 1 and 2 lie on different propagation paths; but
the causal connection ensures that a one-to-one correspondence exists between the
pulses in x,(!) and w,(¢!). This latter condition allows the cross-spectral density
between the random pulse trains x,(¢) and x,(¢) to be written as

d<8yy) = 2p<a*) Gy (jo) G3 (jw) d4, (11)

where G,(jw) is the Fourier transform of g,(¢), i = 1,2, p is the mean rate of pulses per
unit area, and the asterisk denotes complex conjugation. Obviously, (7) is a special
case of (11) and we shall refer to both as Carson’s theorem.

The cross-spectral density of the total noise field at the two sensors is obtained by
integrating (11) over the sea surface:

(Sua> = 20¢at) f G (j0) G 0) a4, (12)

and the (complex) coherence function, I',,, is defined as

I, = <Sl2>/[<811> <S22>]%- (13)

Phil. Trans. R. Soc. Lond. A (1994)
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(a) (b) annulus of
noise
sea sources
¢ surface
. .....‘{ /
T plane of
noise

/ sources

inverse-square
profile

receiver 1 ~———p= i
(depth coordinate z,)

...,

receiver 2 ——p— @
(depth coordinate z,)
Figure 2. Geometry for the problem of noise in an inverse-square ocean. (@) Inverse-square profile.
(b) Two vertically aligned sensors centred on an annulus of surface noise sources. The Green’s
functions g, (t) and g,(t) represent, respectively, the propagation from a single source within d4 to

receivers 1 and 2. The hatching on the arrows indicates that in general the propagation is not along
straight-line paths.

In reality the surface sources are not impulsive but possess some source strength
function that is characteristic of the source mechanism itself. The cross-spectral
density, {S,,), should therefore be modified, but only by a factor representing the
source spectrum, and this factor would cancel in (13) leaving the coherence function
unaffected.

For two vertically separated sensors in plane-wave, spatially homogeneous noise,
the coherence function is related to the directional density function (i.e. the noise
power per unit solid angle) through a Fourier transform relationship (Cox 1973); but
for spatially inhomogeneous noise fields, as found in an ocean with an inverse-square
profile, no such simple connection exists between spatial coherence and noise
directionality. Indeed, spatially inhomogeneous noise fields show no unique
directional density function, rendering the concept of directionality almost
meaningless.

3. Theory: noise in the inverse-square profile

To derive the cross-spectral density of surface-generated ambient noise at two
vertically aligned sensors in an inverse-square ocean we choose a cylindrical
coordinate system, with the axis vertical and passing through both sensors. The
origin of the coordinate system is set at a distance z; above the surface. Immediately
below the surface, a random distribution of point, transient sources is located on a
horizontal plane whose z-coordinate is equal to z’. Thus, the depth of the sources is
d’ = (2 —z,) (figure 2), which is small compared with all other dimensions in the
problem. With little loss of generality, we shall assume that all the source strength
functions are an identical shape.

By virtue of the azimuthal symmetry of the problem, the arrivals at a given
receiver from all the sources within an annulus on the surface of radius » and
thickness dr (figure 2) possess the same Green’s function, and hence the surface

Phil. Trans. R. Soc. Lond. A (1994)
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328 M. J. Buckingham

integral in Carson’s theorem (equation (12)) for the cross-spectral density
immediately reduces to a single integral over range:

(810,21, 25)) = 4TtPQ(w)J rG (w) G (@) dr, (14)
0

where z, and z, are the depth coordinates of the two receivers, and the spectrum of

the sources, @(w), is now included explicitly in the formulation. (If the sources were

to generate a variety of acoustic pulse shapes, then @(w) would represent an

appropriately weighted average source spectrum.) The Green’s functions ¢; and @,

are given by the expression in (2) evaluated at the two sensor depths, 2z, and z,:

Gi(w) =3 \/(zz')J PS,(1,2;) Jo(pr)dp, i=1,2, (15)
0
H(D('ﬂzi) (@) (10’ \ FT) (2) (1) (3
Where Sﬂ(”’zi) =H(1)( z) Hlu ("72 )Hﬂ (nzs)_H/t (nZS)Hﬂ (772 )] (16)
Y22 77 S

Since the sources lie very close to the surface, a significant simplification can be
achieved by expanding S, in a Taylor series to first order in the small parameter
(d'/z):

cd’ HO(nz.
_ITHS )y (17)

S,(m,2) & nz HO ()’

On substituting the Green’s functions in (15) into (14), the cross-spectral density
is expressed as a triple integral over horizontal wavenumbers p, and p,, say, and
range r. The range integral is just the Bessel function closure relation:

[y o ar = 222, (18)
0 P2

where 0(.) is the Dirac delta function, which in this context signifies that components
of the noise field with different horizontal wavenumbers are uncorrelated. From the
sampling property of the delta function, the remaining two integrals reduce to a
single integral, allowing the cross-spectral density to be formulated as

Stz 2y = LLDZN I [Ty 1.2 5709, ap
_ PR(w) V/ (2,2,)d" [ H(”(ﬁzl)H‘”*(ﬁzz)
B Tzg Jl) P |HL1)(77§S)|2 ap.

(19)

where the source depth coordinate, z’, has been set equal to z, outside the integral,
and 7 and u are as defined in (3) and (4), respectively.

In the absence of volume attenuation in the ocean, the integrand in (19) has an
infinite set of second-order poles on the real axis, a consequence of which is that the
integral diverges, indicating infinite power in the noise field. This non-physical result,
which is somewhat analogous to Olbers’ (1826) paradox, arises because the acoustic
power at the receivers from each of the sources in the annulus of radius r (figure 2)
decays as r~!, while the number of sources in the annulus is proportional to 7, so the
total power from the annulus is a constant, independent of r. On integrating this
constant over an infinite ocean surface, an indefinitely high noise level is obtained.

Phil. Trans. R. Soc. Lond. A (1994)
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This difficulty is alleviated by allowing for volume absorption in the ocean, which,
in effect, eliminates those acoustic arrivals originating on the sea surface beyond
a critical radius determined by the value of the attenuation coefficient at the
frequency of interest.

When absorption is taken into account, the second-order poles in the integral in
(19) split into two conjugate sets of first-order poles, which fall on either side of the
real axis. By integrating around an appropriate contour, as discussed in Appendix A,
the cross-spectral density of the noise can be expressed as two branch-line integrals
plus an infinite sum of uncoupled normal modes:

<S12(w 2y,25) ) = PR(w) V(21 25) /2/th
{J H(~1J)u 7721 H(~2‘])u d77 J H(-z.])u H(Z) (sz)

HY,(72,) HO,( H (2 H‘”( z)
g = )H‘fj& o 6117 £ (20)
where £ is the (frequency dependent) attenuation coefficient of sea water,
§i=2z/z, i=12 (21)
are normalized sensor depths, and
v=ju = (ki h*—3), (22)

which is real and positive when the profile supports normal modes. (If kA < 0.25
then v is imaginary, in which case there are no poles in the integrand of (19) and hence
the normal mode component of (20) is identically zero.)

The eigenvalues, o, in (20) are solutions of the characteristic equation

H®Y (jo,,) = 0. (23)

=
As discussed in I, the Hankel function in (23) has an asymptotic form which yields

the zeros essentially exactly. They turn out to be the roots of the transcendental
equation

vin

[v+ v (V2—0o2)
o

m

]—v(vhafn)-}:%(zm-nn, m=1,2,....  (24)

An approximate solution to this equation, obtained by neglecting o,, in both
radicals, is
o, X 2vexp (An—mmn/v—1), (25)

which is a satisfactory starting value in a Newton—Raphson iterative routine for
finding the ‘exact’ roots of (24). Computationally, this procedure involves negligible
effort, requiring perhaps five iterations to achieve convergence.

The expression in (20) for the cross-spectral density of the noise at two vertically
separated sensors in an ocean with an inverse-square profile is exact. It involves the
three profile parameters explicitly, as well as the attenuation coefficient £ in the
denominator of the long range, normal mode component. The fact that the depth
coordinates of the two sensors, z; and z,, appear separately in the solution and not
as the difference |z, —z,| indicates that in general the inverse-square noise field is
spatially inhomogeneous.

A special case of the inverse-square profile is the isovelocity profile, obtained by

Phil. Trans. R. Soc. Lond. A (1994)
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setting £ =0 in (1). Since all the Hankel functions in (20) are then of order 3 (i.e.
v =1j), they can be expressed exactly in terms of elementary functions, allowing
the two integrals in the cross-spectral density function to be evaluated explicitly.
The normal mode component, on the other hand, is identically zero because the
characteristic equation (equation (23)) has no roots when v is imaginary. Thus, the
final expression for the isovelocity cross-spectral density consists of just two terms,
of which one, associated with the finite integral in (20), is spatially homogeneous,
whilst the other, from the infinite integral, is inhomogeneous. The latter is negligible
at depths greater than a wavelength below the surface. A comparison of this special
case of the inverse-square solution with the known form for the cross-spectral density
in an isovelocity ocean (Isakovich & Kur'yanov 1970; Buckingham 1990a) shows
that the two are identical. A complete account of the cross-spectral density of noise
in an isovelocity profile, as derived from the general inverse-square noise theory, is
given in Appendix B.

4. The cross-spectral density function

In general, the Hankel functions in (20) cannot be expressed in terms of
elementary functions, and the integrals and mode sum have to be evaluated
numerically. Since the Hankel functions are tedious to compute directly, it is
convenient to represent them by their asymptotic forms, which are remarkably
accurate.

Taking the eigenfunctions in the mode sum first, it can be shown from Langer’s
(1932, 1949) turning point theory that Hankel functions of imaginary argument and
imaginary order possess the following uniform asymptotic expansion (Balogh 1967 ;
Olver 1974):

H® (o) ~ j24/2e7(Q/ (2 —0?))T Ai (—Q), (260)
where
Q=Q(c) = {Q [m (” V(”z_az))— V(Vz*‘fz)]}ﬁ, for o<, (26b)
2 o v
Q=Q(0) = —{% [ﬂr—i:lz—)—arctan (ﬂ%—_—vz—)ﬂ}s, for o>y, (26¢)

and Ai(.) is the Airy function of the first kind. In I it is shown that an asymptotic
form similar to that in (26 @) is essentially indistinguishable from the original Hankel
function for all values of v and o relevant to modal propagation.

Hankel functions of imaginary order and real argument, of the type appearing in
the integrals in (20), possess a uniform (in the argument) asymptotic expansion of the
form (Olver 1954a, b):

HP (o) & —je™2 4/ (2/m) (¥ + o) Texp [jx(o)], (27)
where X(o) = (V¥ + o) —vIn{{v++/ (V2 +0?)]/o} +in. (28)

The corresponding asymptotic expansion for the Hankel function of the second kind
is obtained by conjugating (27).

On substituting the above uniform asymptotic forms for the Hankel functions into
(20), the cross-spectral density of the noise can be expressed as

$812(@, 24, 2)) = (PQ() V/ (21 2,) d"* [ mzg) {Ly — Ly + Ly}, (29a)
Phil. Trans. R. Soc. Lond. A (1994)
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where . .
@ (P24 vP) .
L, = ; ; — dy, 2
1 fo 77 (7722% + Vg)a (77223 + V2)I eXp []{X(”zl) X(”z2)}] 77 ( gb)
(3 2,2 2\3
” (1725 + V) ,
= 1 i -2 dy, 29
) 2 f N T (X (z1) + x(n20) =2x(nzs)} 1 dop, - (29¢)
an

P {Q(amgl)}% {Q(amg)}%

Tk A N —) =k & P—o e
XAi[—Q(0,,&)]AI[—Q(0, )] (29d)

When z, = z,, the expressions in (29) for the cross-spectral reduce to a form which
is real and positive, representing the power spectrum of the noise.

Equations (29) represent our final solution for the cross-spectral density of the
noise. Each of the three terms in the solution has a different physical interpretation:
L, represents direct path contributions to the noise field, mainly from local, overhead
sources; L, is a near-surface term that is entirely negligible at depths greater than a
wavelength beneath the surface; while the mode sum, L, includes short and long
range contributions, arising from sources located all over the sea surface. In general,
all three terms exhibit some degree of spatial inhomogeneity. The two integrals, L,
and L,, are complex (except when z, = z,), and neither is suitable for evaluation by
the method of stationary phase, since the phase functions comprising the arguments
of the exponentials show no turning points. The presence of a discrete component,
L,, in the noise field is consistent with the modal character of the propagation.
Similar discrete terms appear in the expressions for the cross-spectral density of the
noise in the Pekeris channel (Buckingham 1980) and the isovelocity, ideal wedge
(Buckingham 1985).

The two terms L, and L, are not difficult to compute, the integral L, by a
Simpson’s rule algorithm and the mode sum, L,, with the aid of a straightforward
Airy function routine. By way of contrast, the integral L, poses some computational
problems, associated with the highly oscillatory nature of the integrand and the upper
limit of infinity on the integral. However, an order of magnitude estimate for L,
may be derived on the assumption that the major contribution to the integral arises
from the region where 5z, > v. The integral may then be written in the form (see
Appendix B)

2 00
L, ~ 2 exp (—jan)d
2 '\/(2122)]0 77 p( .] 77) 77
z d (®
=] 5 —— | exp(—jap)d
i, i
- —d-[ns(a) —1] (30a)
IV z) da al
where a = (2, +2,—22) (30b)

is twice the mean depth (beneath the surface) of the sensors. On taking the derivative
in (31a), and recognizing that the delta function may be neglected since it is zero
when either sensor lie below the surface, the final result for L, is found to be

Ly & —2,/{/ (212y) (21 + 2 — 224)%). (31)
Phil. Trans. R. Soc. Lond. A (1994)
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As with the inhomogeneous component of the noise field in isovelocity water
(Appendix B), the dimensionless quantity L,/k? is inversely proportional to the
square of (k,, times the mean depth of the sensors), indicating that at depths of more
than one wavelength below the surface, L, makes a negligible contribution to the
noise.

5. Ambient noise in the Greenland Sea: inverse-square theory

For several years, the Defence Research Agency, Farnborough, United Kingdom
(previously, the Royal Aerospace Establishment) has been conducting a programme
of airborne ocean-acoustics research in the marginal ice zone (M1z) off the east coast
of Greenland between the Denmark Strait (x~ 68° N, 25° W) and the Fram Strait
(=~ 80° N, 0°W) (Buckingham 19906). As part of the programme, measurements
of the omni-directional ambient noise and the temperature profile have been made
in the m1z. The measurements are obtained by dropping calibrated sonobuoys and
aircraft-expendable-bathythermographs (axBTs) from a fixed-wing aircraft (a
BAC 1-11 twin-engine jet) into leads of open water between ice floes.

Acoustic data are collected with two different types of buoy, covering overlapping
frequency bands, designated very-low-frequency (VLF), extending from 5 Hz up to
200 Hz, and low-frequency (LF), from 50 Hz up to 5 kHz. The vLF buoys are specially
designed with flow-shielding and other features to alleviate self-noise problems below
50 Hz (Strasberg 1979). As standard practice, we co-locate one vLF and one LF buoy
at each measurement position. Measurements have been made in all seasons and in
weather conditions ranging from sea-state zero (0) to sea-state six (6). (At higher sea
states the buoys experience washover, which degrades the radio frequency telemetry
transmissions by inducing data dropout.)

Before discussing one set of noise spectra (§6), observed in summer 1988, we
evaluate the inverse-square theory and examine its predictions in connection with
the noise field in the experimental area. To begin, values are assigned to the three
inverse-square profile parameters, based on the requirement that (1) should show a
reasonable fit to a sound speed profile that is representative of the ocean-acoustic
conditions in the observation area.

(@) The summer sound speed profile

Although axBTs are dropped from the research aircraft, giving a spot temperature
profile, no salinity profile is taken at the time the acoustic measurements are made.
Since the presence of the partial ice cover tends to reduce the near-surface salinity,
it is necessary to assume some appropriate form for the variation of salinity with
depths in order to estimate the sound speed profile.

Johannessen et al. (1986) made hourly conductivity-temperature-depth (cTD)
observations in the Fram Strait on 3 and 4 July 1983, when weather conditions were
calm (winds less than 5 m s7!). Their averaged salinity profile, from 48 cTD casts,
shows only a mild variation with depth, increasing approximately linearly from a
surface value of 34 parts per thousand (%,) to 35%, at a depth of 150 m, remaining
essentially constant thereafter. (A salinity increment of 19, corresponds to a sound
speed increase of approximately 1 m s7!). Their averaged temperature profile is very
similar to our AXBT data taken at the time of the noise measurements, but extends
200 m deeper into the ocean. The sound speed profile depicted by the crosses in figure
3 was calculated from the averaged temperature and salinity data of Johannessen et

Phil. Trans. R. Soc. Lond. A (1994)
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depth/m .
Figure 3. Sound speed profile (crosses) derived from averaged cTp data (see text for details). The

solid line is an inverse-square profile with parameters A= 18.34 m, z, =100 m, and ¢, =
1462 m s™1.

al. (1986) using an empirical polynomial expression due to Mackenzie (1981a, b). This
profile is very similar to many of those reported by Meredith et al. (1989), as
illustrated for example by their crp Cast 19B, and is considered to be a good
representation of the summer sound speed conditions that pertained when our
ambient noise measurements in the Greenland Sea were made.

The inverse-square profile can be fitted reasonably well to the sound speed data of
Johannessen et al. (1986), as illustrated by the solid line in figure 3. The values of the
inverse-square parameters used to achieve the fit are: A = 18.34 m, z, = 100 m, and
¢, = 1462 m s71, corresponding to a surface sound speed of 1438 m s™'. These profile
parameters are used hereafter in the inverse-square noise theory to interpret the
spectral and spatial characteristics of summer-time ambient noise in the Fram Strait.

(b) The attenuation coefficient

The absorption coefficient, £, which appears as a factor in the mode sum, L,, must
also be specified in order to evaluate the inverse-square noise theory. For frequencies
below 10 kHz, Kibblewhite & Hampton (1980) have proposed the following form for

the attenuation coefficient, «, expressed in dB km™:

o= ag+0. LK f21+ (f/f,)5 1 +0.011f2, (32)

where f is frequency in Hertz and o is a frequency-independent term, of uncertain
physical origin but possibly associated with scattering from turbulence, which is
dominant at frequencies below 100 Hz. Equation (32) is a modification of the
form for a originally proposed by Thorp (1965, 1967). The value of «, depends on
the nature of the water mass, showing regional variations within the range
2x107-4.2x 1072 dB km™'. The second term on the right of (32) represents

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 4. The absorption coefficient, £, as a function of frequency.

absorption due to the relaxation of boric acid, whose relaxation frequency is f, =
1 kHz; and the third term is associated with the relaxation of magnesium sulphate,
whose relaxation frequency is around 65 kHz. The factor K in the boric acid term is
a pH-dependent parameter whose value lies between 0.5 and 1.1. Kibblewhite &
Hampton (1980) suggest that appropriate values of ag and K for polar waters are
4.2x 107> dB km™ and 0.5, respectively; and accordingly, these values are adopted
below in our evaluation of the inverse-square noise theory.

In passing, it is worth remarking that the existence of an excess attenuation at
frequencies below 100 Hz, as represented by o, in (32), has on occasion been called
into question. The reason for the doubts about its reality is the assumption of
cylindrical spreading that is conventionally adopted in interpreting long range, vLr
propagation data. To avoid this difficulty, Kibblewhite et al. (1976) conducted a
novel experiment in which relative levels of vLF ambient noise were compared at two
sites about 1000 km apart in the North Pacific. This differential noise measurement
yielded a value for a that is consistent with the values derived by more conventional
propagation techniques, but which did not rely on the assumption of cylindrical
spreading. From this and other evidence, the existence and magnitude of the vLr
excess attenuation is now fairly well accepted.

In the inverse-square expression for the cross-spectral density of the noise, the
attenuation coefficient, f, is in nepers per metre. Thus /3 is related to « through the
scaling law

B =a/2x10*xlog (e). (33)

Figure 4 shows £ plotted as a function of frequency, as evaluated from (32) and (33).

Phil. Trans. R. Soc. Lond. A (1994)
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(¢) An empirical source strength function

The magnitude of the expression for the cross-spectral density in (29a) depends on
several source parameters: the rate of events per unit area of surface, p, the depth
of the noise sources, d’, and the magnitude of the source strength function @(w). No
attempt is made here to derive theoretical estimates of these parameters, since our
emphasis is on propagation phenomena rather than source mechanisms but we shall
assume that the frequency dependence of Q(w) is given by a power law of the form

Qo) oc f72. (34)

(The source strength function, Q(w), is distinet from the ‘surface noise source level’
(Burgess & Kewley 1983) and the ‘source level density ’ (Wilson 1983), both of which
relate to the level and spectral shape of the ambient noise field as observed at some
point in the ocean. These terms do not relate explicitly to the spectral shape of the
soufces.) As discussed later, when the empirical relationship in (34) is used in the
inverse-square theory, it provides a good match to one particular set of noise spectra
that we acquired in the vicinity of the ice edge near the Fram Strait.

(d) The miz power spectrum

Figure 5 shows the power spectrum calculated from the inverse-square theory
usihg the parameter values derived above. In evaluating the theoretical spectrum,
the depth of the sensor has been taken as 160 m, corresponding to the depth setting
of the hydrophones used in our ambient noise measurements. For convenience in
making comparisons with the experimental data, the vLF (5 to 200 Hz) and L¥ (50 Hz
to 2 kHz) spectral regimes are considered separately.

Taking the VLF spectrum first (figure 5a), the near-surface term, L,, is seen to be
negligible at all frequencies above 5 Hz (that is, over the whole frequency range of
the data). At frequencies above 20 Hz the modal component L, dominates the direct
path term L, ; but below 20 Hz the modes are no longer supported by the profile and
L, drops dramatically. As the direct path term shows a fairly steep negative slope in
this region, the net effect is a minimum in the spectrum at about 10 Hz. The slow
oscillations present in the vLF spectrum can be identified with individual modes in
L,. The minimum at 10 Hz is significant, since a similar feature appears in the
measured ambient noise spectra from the Greenland Sea.

Turning to the low frequency curves in figure 5b, it is evident that over the whole
frequency range the direct path term L, shows a uniform (logarithmic) slope of —1.3
(—13 dB per decade). Between 50 and 100 Hz, where the attenuation coefficient is
essentially independent of frequency, the mode sum, L,, shows a (logarithmic) slope
close to —1.5 (—15dB per decade); but at higher frequencies the attenuation
coefficient varies as the square of the frequency, as a result of which L; decays more
rapidly, eventually dropping below the near-field term, L,, at about 500 Hz. Thus,
the low-frequency spectrum is almost entirely modal at frequencies below 100 Hz or
so, then passes through a transition region of somewhat steeper (negative) slope, to
become almost entirely direct path at 2 kHz and above. The kink in the spectrum
centred on a frequency of about 400 Hz and associated with the transition from
modal to near-field noise will be important later in interpreting low-frequency
spectra observed in the Greenland Sea. Incidentally, the presence of the kink in the
noise data is supporting evidence for the existence of the frequency independent,
excess attenuation term, ag, in the expression for the attenuation coefficient in (32).

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 5. Spectra for the mMiz from the inverse-square theory, for a receiver 160 m below the
surface. (@) Very-low-frequency (5 to 200 Hz) on log-linear scales. (b) Low-frequency (50 Hz to
2 kHz) on log-log scales. The dashed and dash-dot lines represent the contributions from the
integral L, and the mode sum L, respectively; the dotted curve in (a) is the contribution of the
near-surface term, L, and the solid line in (a) and (b) is the total spectrum. For reference, the
straight dotted line in (b) shows a logarithmic slope of —1.5 (i.e. —15dB per decade). L, is not
shown in the LF spectrum since it is entirely negligible.

Figure 6 shows the inverse-square power spectrum at four frequencies, 20, 100, 500
and 1000 Hz, as a function of depth (beneath the surface). In all cases, the noise level
below 2 km is small compared with the levels at depths of a few hundred metres. An
important implication of this result is that, when the sea floor is at a depth of 2 km
or more, the effect of acoustic bottom interactions must be negligible on the near-

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 6. m1z noise spectra as a function of depth for four frequencies, from inverse-square theory.

The dashed line is the direct path component, L,, the dotted line is the near-surface component

)

L,, the dash-dot line is the modal component, L, and the solid line is the total spectrum.
f =20 Hz (a), 100 Hz (b), 500 Hz (c), 1 kHz (d).
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Figure 7. Coherence plots from the M1z inverse-square theory for a frequency of 100 Hz. The solid,
dashed and dot-dash curves are the magnitude, real part and imaginary part, respectively, of the

coherence function. (L, was neglected in computing these curves.) Mean depth = 100 m (a)

200 m (b), 500 m (c), 1000 m (d).
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coherence

coherence

_1 1 L L J

0 2 A2 4 0 2 A2 4
Figure 8. Coherence plots from the M1z inverse-square theory for a frequency of 500 Hz. The solid,
dashed and dot—dash curves are the magnitude, real part and imaginary part, respectively, of the

coherence function. (L, was neglected in computing these curves.) Mean depth = 100 m (a),
200 m (b), 500 m (¢), 1000 m (d).

surface noise field. This is true even at 20 Hz, where the noise level at a depth of 2 km
is 12 dB or so less than that at 100 m.

(e) Vertical spatial coherence

The expressions for the cross-spectral density in (29) can be used in (13) to give the
vertical spatial coherence of the noise. By treating the mean depth of the two sensors
as a parameter, the spatial coherence can be conveniently examined as a function of
the sensor separation, the usual convention being to express the latter in terms of
wavelengths. Variations in the coherence function with the mean depth of the sensors
indicate the degree of spatial inhomogeneity exhibited by the noise field.

Examples of the coherence function for our Greenland Sea parameters are shown
in figures 7 and 8 for frequencies of 100 Hz and 500 Hz, respectively. On the "
abscissae, 4 = (z,—7,) is the sensor separation and A is the acoustic wavelength. At
both frequencies the noise coherence shows a strong dependence on the mean depth
of the sensors, even below 500 m, where the sound speed profile is essentially uniform.
One implication of these curves is that a vertical array of even modest aperture, say
100 m, placed anywhere in the water column, would be exposed to a noise field whose
coherence (i.e. directional) properties differ substantially from top to bottom. Plane-
wave beamforming in these circumstances, aimed at determining the ‘directionality’
of the noise, would be inappropriate since no unique directional density function
exists.

The profound effect of the inverse-square profile on the noise field is evident in
figures 7 and 8, not only through the variations with mean depth, but also through
the frequency dependence of the coherence function. This makes an interesting
comparison with surface-generated noise in an isovelocity ocean, which is spatially
homogeneous at depths greater than a wavelength and shows a coherence function

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 9. The bathymetry, ice cover (shading) and sonobuoy configuration (collinear positions A
to E) in DRA ambient noise ice-edge experiment. The numbers on the depth contours and the
bracketed numbers by the buoy positions denote depth in hundreds of metres. Sites A and E at
either end of the track are at positions 75°44’ N, 03° 03’ W and 76°37.6' N, 07°32.2° W,
respectively, corresponding to a nominal separation between nearest-neighbour buoy pairs of
36 km. The high concentration of floes at the ice edge, which runs along the 3000 m contour, is
depicted by the ribbon of darker shading.

that depends only on the ratio 4/A (Appendix B, equation (B 6)). Thus, under
isovelocity conditions, coherence plots like those in figures 7 and 8 would show all
eight panels as identical.

6. Ambient noise in the Greenland Sea: experiment

On 4 August 1988, as part of the programme of Arctic airborne acoustic research
in the M1z described in the preceding section, five pairs of omni-directional sonobuoys
(one vLF and one LF buoy in each pair) were dropped in a line perpendicular to the
ice edge in the vicinity of the Fram Strait. Figure 9 shows the positions of the buoy
pairs, labelled A (easternmost) to E (westernmost), with C being the position at the
ice edge itself. The separation between adjacent buoy pairs was nominally 36 km, and
all hydrophones were at a nominal depth of 160 m. It can be seen from the depth
contours in figure 9 that at the four positions A to D the water is deep, 2000 m or

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 10. Spectral levels along the track perpendicular to the ice edge. Note the reduced peak
at the ice edge at 40 Hz.

greater, but that the fifth position, K, is over the Greenland continental shelf, where
the depth is less than 400 m. (For the detailed bathymetry of the region see Perry
(1986).) Effects of the shallow water at site E can be seen in the vLF and LF noise
spectra described below.

In the open ocean, the sea state was 1 to 2 with no visible swell. A few kilometres
west of the ice edge, which was fairly compact, the ice concentration was about 6/10,
but near the ice edge itself the concentration was considerably higher (figure 9),
presumably as a result of an earlier on-ice wind. At the time of the experiment a light
breeze (wind speed of 3.5 ms™) was blowing out of the northeast (i.e. roughly
parallel to the ice edge). The ice floes were relatively small at the ice edge, of the order
of metres in diameter, but deeper into the ice cover the floe diameters increased to
tens of metres at position D, 36 km from the ice edge, and hundreds of metres at
position E, 72 km from the edge.

(@) Spatial variation of the noise across the ice edge

Figure 10 shows the sound pressure levels observed at four frequencies, 40, 80, 200
and 800 Hz at each of the five buoy locations. At the ice edge the spectral level shows
a maximum at all four frequencies, although at the two lower frequencies the peak
is less pronounced, especially so at 40 Hz, where the level at the ice edge is little
different from that at the adjacent buoys 36 km either side of the edge. The presence
of the ice-edge peak in figure 10 is consistent with the observations of Diachok &
Winokur (1974), who reported noise measurements across the edge at 100, 315 and
1000 Hz. They suggest that the ice edge acts as a strong broadband line source.

Perhaps a more descriptive term is ‘ribbon source’, since the acoustically active
region is a strip several kilometres wide extending along the ice edge. Qualitatively
at least, the high level of sound at the ice edge is consistent with the fact that, due
to the action of waves and swell (Wadhams 1986), the edge is a very energetic region,
where floe-floe interactions (bumping, grinding, etc.) are frequent and violent. It is
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Figure 11. Averaged L¥ spectra observed at sites A to E across the ice edge. In (a), (b) and (d), the
two broken lines indicate the kink in the spectra at about 400 Hz. The single broken line in (¢) and
(e) illustrates the uniform slope of the spectra. (a) Position A (open ocean, water depth 3700 m);
(b) position B (open ocean, water depth 3600 m); (c) position C (ice edge, water depth 3100 m);
(d) position D (ice cover, water depth 2000 m); (e) position E (ice cover, water depth < 400 m).

reasonable to expect that such interactions would be very noisy. Our observation at
the time of the experiment — that the floes were small in the vicinity of the edge but
increased in size dramatically with distance into the ice cover —supports the view
that most of the wave—ice interaction had indeed occurred within several kilometres
of the ice edge.

The reduced level (figure 10) of the ice-edge peak at the lower frequencies can be
interpreted in terms of the principal spectral components of the noise predicted by
the inverse-square theory (figure 5). Suppose that the surface sources are made up of
two distributions: a background of sources uniformly distributed (statistically)
across the whole sea surface, upon which is superimposed the highly energetic ribbon
of sources associated with the ice edge (figure 9). As far as the buoy at the ice edge
is concerned, the direct path component of the noise field (L,) originates in local,
overhead sources, that is to say primarily from within the high-energy ribbon. The
normal mode component (L), on the other hand, is driven mainly by the distant
background sources (since the number of distant sources in the narrow, energetic
ribbon is relatively small). Accordingly, L, should show much the same level as if the
ice-edge sources were absent, whereas L, should be enhanced by their presence. Thus,
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at the ice edge buoy, we expect L, to be higher relative to L, than is indicated in
figure 5b, which shows the relative levels when both components originate in a
uniform distribution of surface sources.

To investigate the implications of this shift in relative magnitudes arising from the
ice-edge ribbon, suppose that L, in figure 5b were raised by a nominal 8 dB. At
frequencies of 100 Hz and above, L, then becomes the dominant component in the
noise spectrum, leading to an enhancement of 8 dB or so in the total spectral level.
This is representative of the situation at the ice edge and, since L, is a local
phenomenon, is consistent with the observation of the ice-edge peak (figure 10). At
lower frequencies, however, because of the steeper slope of L,, the enhanced L is not
predominant but only comparable to or somewhat less than L,. In this case the total
noise level at the ice edge should be much the same as at other locations along the
line of buoys, again in accord with the observations. We conclude that the frequency
dependence exhibited by the ice edge peak in figure 10 arises directly from the
spatially non-uniform distribution of energetic sources aligned along the ice edge.
These sources enhance the direct path but not the modal component of the noise at
the higher frequencies.

A second interesting feature of figure 10 is the relatively high spectral levels
observed at all frequencies at the westernmost pair of buoys (location E), nearest the
Greenland coast. Whatever the origin of these high levels, the generating mechanism
is almost certainly a localized process, since the phenomenon is observed at only one
location. A plausible hypothesis is that the locally enhanced levels are due to
increased source levels associated with the very large floes in the region, driven
perhaps by wind rather than surface waves, which are heavily attenuated so far into
the ice cover. The fact that these energetic sources do not affect the buoys at the
other locations may be due to mode stripping arising from the proximity of the
bottom. Some support for this argument is presented in the following discussions of
the LF and VLF spectra observed at site K.

(b) Low-freque ey spectra

The LF spectra obtained from the five locations along the track perpendicular to
the ice edge are shown in figure 11. Each spectrum is an average of 1000 individual
spectra taken over an interval of 200 s, giving a spectral resolution of 5 Hz. As with
the spatial plot in figure 10, the features on the five spectra can be interpreted in
terms of the inverse-square noise theory developed in §5.

The spectra from the two LF buoys at positions A and B in the open ocean, where
the water depth is ca. 3700 m and bottom interactions are negligible, are shown in
figure 11a, b. Both spectra show a change of (logarithmic) slope at about 400 Hz.
This behaviour is in accord with the theoretical spectrum in figure 55, leading to the
conclusion that the spectra are dominated by the modal component (L) below
400 Hz and the direct path component (L,) at higher frequencies.

The spectrum from the LF buoy at position C on the ice edge does not show a kink
but has a uniform slope from 80 Hz to 1 kHz (figure 11¢), suggesting that the direct
path component is dominant over this frequency band. This is consistent with our
interpretation of the ice-edge peak in figure 10: most of the noise originates in the
high-energy, overhead sources at the ice edge, with the distant background sources
making a small contribution by comparison. No mode stripping is possible through
bottom interactions (figure 6) because the water depth (ca. 3100 m) is too great.

A change in slope at few hundred hertz reappears in the spectrum from the L.¥ buoy
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Figure 12. Averaged VLF spectra observed at sites A to E, as detailed in figure 11, across the
ice edge. (i) Minimum ca. 10 Hz.

at position D, 36 km into the ice (figure 11d). Bottom interactions are negligible
(figure 6), since the water depth is 2000 m; and the interpretation of the spectrum is
the same as with the spectra at positions A and B.

The spectrum from the last LF buoy in the line, at position E, where the water is
only 400 m deep, does not show a change of slope around 400 Hz (figure 11e). This
is consistent with the hypothesis in §6a that bottom interactions reduce significantly
the modal component of the noise, the effect being to leave the direct path, uniform
slope component as the principal contributor to the spectrum above 100 Hz. The
enhanced LH spectral levels at this position, shown in figure 10, could possibly be
attributed to the massive ice floes that are present so deep in the ice cover, which,
driven by wind, act as very energetic sources.

(c) Very-low-frequency spectra

The spectra from the VLF buoys at positions A to E are shown in figure 12. Each
spectrum is an average of 100 individual spectra taken over an interval of 200 s,
giving a spectral resolution of 0.5 Hz. Two prominent features at all locations are a
peak just above 20 Hz and a minimum centred around 10 Hz. Below 5 Hz, where it
is known that the effectiveness of the flow shielding is reduced, the high noise level
is probably not a genuine acoustic signal but an artefact associated with
hydrodynamic flow around the hydrophone.
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The origin of the 20 Hz peak is uncertain but it may be produced by marine
mammals, notably the finback whale (Watkins et al. 1987), although there are some
difficulties with the finback hypothesis. An alternative possibility is that the peak
originates in some coastal process, one candidate being slumping glaciers descending
2000 m or so over bedrock from the Greenland ice cap to sea level. Both the finback
whale and slumping-glacier hypotheses are discussed by Buckingham (1990b).

In the present context, the more important feature in the spectra of figure 12 is the
minimum at 10 Hz. It corresponds accurately to the minimum predicted by the
inverse-square theory (figure 5a) and is interpreted accordingly: below 20 Hz, the
modal component (L,) of the noise shows a steep positive slope, associated with mode
drop-out, whereas the direct path component (L,) shows a negative slope, the cross-
over between the two falling at about 10 Hz, giving rise to the observed minimum.
The 10 Hz minimum is a ubiquitous feature of our noise spectra from the miz,
appearing in all weather conditions and seasons of the year.

At the deep, open ocean positions A and B, the VLF spectra are consistent with the
theoretical form in figure 5a. Accordingly, they are interpreted as consisting of a
combination of direct path and normal mode components, arising from a uniform
distribution of surface sources. The noise level at the ice edge, position C, is several
dB higher above 100 Hz than the levels at A and B. As with the ice-edge peak in the
spatial distribution in figure 10, this is interpreted as arising from a relative increase
in the direct path component, associated with the localized distribution of sources at
the edge, as described in §6a. Below 100 Hz at position C, the normal mode
component takes over as the major contributor to the noise, its presence being
evident from the rapid roll-off below 20 Hz.

The vLF spectrum at position D is consistent with a uniform distribution of surface
sources, much like the spectra at A and B, and can be interpreted according to the
inverse-square curves in figure 5a. At site E, deep into the ice cover, the VLF levels
show a noticeable enhancement, perhaps due to large floes acting as energetic
acoustic sources. The normal mode component shows a roll-off below 20 Hz that
is more rapid than at the other locations, behaviour that could reasonably be
attributed to excess mode attenuation through bottom interactions, since the water
is shallow at this position.

(d) Notse data versus the inverse-square theory : summary

On the whole, the spatial distribution and frequency dependence of the noise data
that were taken across the ice edge are consistent with the inverse-square noise
theory, provided the high concentration of intensive surface sources at the ice edge
itself is taken into account. It is also necessary to postulate an energetic source
distribution deep into the ice cover to accommodate the high noise levels observed
there. Minor discrepancies between the theory and observations could possibly be
explained by fine structure in the spectral shape of the sources, which has not been
incorporated into the theory. The important point, however, is that, except for the
frequency dependence of the source strength specified in (34), most of the major
features of the vLF and L¥ ambient noise spectra observed across the ice edge are
effects of the upward refracting propagation conditions.
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7. Concluding remarks

Ambient noise in the ocean is an interesting, complicated phenomenon, whose
spatial and spectral properties depend on the nature of the sources and the acoustic
propagation conditions prevailing beneath the surface. Since acoustic signal
detection in the ocean is performed against the noise background, the noise has
traditionally been regarded as a nuisance, being the factor that degrades the signal-
to-noise ratio. Although this is an understandable point of view, it overlooks the fact
that the structure of the noise field is characterized by the ocean environment. Thus,
the noise contains information about oceanic processes and properties, including, for
example, the geo-acoustic structure of the bottom and rates of gas transfer across the
air-sea interface. In principle, this information can be extracted from the noise,
offering the prospect of conducting acoustical oceanography without the need for
man-made sound sources.

To make full use of the noise, the propagation conditions in the medium must be
taken into account. Most existing theories of ambient noise assume an isovelocity
ocean, which for shallow, well mixed channels may be reasonable but more generally
is not valid. Unfortunately, the mathematics of acoustic propagation in most
non-isovelocity profiles rapidly becomes intractable, rendering a noise analysis
impossible. The inverse-square profile for a semi-infinite ocean (equation (1)) is an
exception in that exact analytical expressions can be developed for the propagation
(the Green’s function) and for the vertical coherence of the ambient noise.

As the inverse-square profile is monotonic increasing with depth, it represents a
relatively simple oceanic sound speed profile, of the type that is found in the polar
oceans, the surface sound channel and the ocean-surface bubble layer. For these
environments, the inverse-square noise theory provides a useful tool for interpreting
noise coherence data, as well as providing the basis of inverse techniques for
extracting oceanographic information from the natural sound field in the ocean.

The acoustic data from the marginal ice zone were acquired by the Royal Aerospace Establishment,
Farnborough, United Kingdom (now the Defence Research Agency, Farnborough, U.K.), using
their fixed-wing research aircraft and their scientific support staff. I am indebted to the DRA for
supporting the Arctic experimental programme and for making the data available. Peter Martinson
and Julian Fletcher of the DRA have been central to the programme from its inception. The skill
and cooperation of the aircrews of the Experimental Flying Department, DRA, Farnborough is
appreciated. Support for the research was also received from the United States Office of Naval
Research under contract N00014-91-J-1118.

Appendix A. The integral for the cross-spectral density

From (19), the expression for the cross-spectral density of ambient noise in an
ocean supporting an inverse-square profile is

_PQ(w)\/(z1zz)d/2 * Hﬁl)(ﬂzl)HLl)*(sz)
=T f LT S

(85w, 2y,

Although this expression is generally valid, it is inconvenient to evaluate numerically
because of poles in the integrand which are on or very close to the path of integration,
to say nothing of the difficulty of computing Hankel functions of imaginary
argument and order. To convert the integral to a more tractable form, we turn to
contour integration in the complex p-plane.
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The integral in question is

112=

? H/il)(nzl)H/(bl)*(nz2) dp, (A 2)

o DDz B r2)
where 0= (k= p*) = |k —pie” (A3)

The radical, 7, has branch points at p = + k. ; and the values of the phase angle, 0,
throughout the p-plane will depend on our choice of branch cuts.

Before addressing the question of branch cuts, however, a more fundamental
problem must be considered : since conjugated terms are present, is the integrand an
analytic function of p? We argue that it is, or at least can be treated as such,
provided the process of conjugation is handled appropriately. The conjugated
Hankel functions in (A 2) can be expressed in the form

[P (@))% = HP(«*), (A4)

indicating that, instead of #, the variable to consider in the argument of these
functions is

=V kS —p)]* = v/ (k52— p?) = IS, —pPlie™, (A5)
which has branch points at p = +£¥%. The important point to note in (A 5) is that the
term p* under the second radical is not conjugated. Now, along the real axis, since
p = p*, (A5) is clearly correct provided o = 0, for then { and 5 are conjugates as
required. It follows that, since the path of integration is along the real axis, the
integral I,, can be expressed as

©HO () HE(Gey)
— V4 1 “ 2
= J PHO (g HO(Czy) P (8.6)

where 7 and { are as defined in (A 3) and (A 5), respectively. The integrand in (A 6)
is analytic throughout the complex p-plane (except at the poles and branch points).
Therefore the integral I,,, as formulated in (A 6), can be evaluated by contour
integration in the p-plane, even though off the real axis » and { do not form a
conjugate pair.

In the absence of absorption in the ocean (i.e. when the imaginary part of k is
identically zero) the two Hankel functions, of the first and second kind, in the
denominator of the integrand in (A 6) show the same zeros, all of which fall on the
real axis. Thus, the integral diverges through the presence of second-order poles on
the path of integration (Olbers’ paradox). These poles are converted to first order by
allowing for attenuation in the medium, in which case the wavenumber, &k, is
complex, with imaginary part equal to £ > 0. This has the effect of separating each
second-order pole into two conjugate first-order poles, which fall either side of the
real axis. This eliminates the problem of divergence in (A 6).

At all frequencies of interest in connection with propagating noise (say below
100 kHz), f is several orders of magnitude smaller than the real part of k.
Throughout most of the analysis of (A 6), f is therefore insignificant and &, may be
treated as real. It is only in handling the residues of the poles that £ must be included
explicitly, to prevent the modal component of the noise from diverging. '

Figure 13 shows the loci of the conjugate poles (first and fourth quadrants), along
with the branch cuts associated with y and ¢ and the phases 6 and «, in the complex
p-plane. The branch cuts are chosen to satisfy the conditions that Im () < 0 and
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Figure 13. (a) Branch cuts of #, depicted by the dashed line, with values of the phase 6 shown in
brackets. The dash-dot—dot—dash line is the locus of the poles associated with the Hankel function
HP(n2,) in the integrand of (A 6). The arrows depict the contour used for the integration of I, (b)
Branch cuts of £, depicted by the dashed line, with values of the phase « shown in brackets. Notlce
that 6 = a along the real axis. The dash-dot-dot—dash line is the locus of the poles associated with
the Hankel function H{2({z,) in the integrand of (A 6).

Im (§) > 0 everywhere on the top Riemann sheet (Felsen & Marcuvitz 1973), since
these inequalities ensure convergence of the quotient of Hankel functions in (A 1)
throughout the p-plane. It is evident from the phases in the diagram that % and ¢ do
form a conjugate pair on the real axis but not elsewhere.

The closed contour to be used in performing the integration (figure 13) runs along
the positive real axis (O A - B), loops around at infinite radius (B -> C), enclosing
the poles in the first quadrant, runs around the branch cut (C—> D > E > F) and back
down the imaginary axis to the origin (F->0). Along the infinite loop, the integral
is zero because of the above mentioned conditions on the i imaginary parts of 3 and
¢, and hence the integral in (A 6) can be written as

I, = f f +2mj E Rm’ (A7)

where R, is the residue of the mth pole in the first quadrant. The contributions from
E—~F and F->0-A cancel and there is a zero contribution from the circle of
infinitesimal radius around the branch point itself. Now, on the right side of the
branch cut, along the path C->D, the phase of 7 is n, whereas the phase of { is zero.
It follows that along the path C-> D we have { = — 7, and hence on making a change
of variable from p to 7 in the integral over the path C-—>D we obtain
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l,=L,—L,+L,, (A 8)
o HG (m2,) HE), (112,)
where L =J TP T T2 (A 9a)
1T THO O HO )

© HE) (n2,) HY (12,)

L, = — dy, A9b

2= ) THE ) HD (zy) (299

and L,=2nj ¥ R,,. (A 9c)
m=0

In the first two of these equations, the order of the Hankel functions, x4, has been set
equal to —jv, as in (22); and the process of analytic continuation (Abramowitz &
Stegun 1965) has been used where necessary to ensure that all the Hankel functions
have positive arguments.

The residue R,, falls at p = p,,, where

Pm =V (k325 +07,)/2 (A 10)
and o, is the mth root of the characteristic equation

HY (o) = 0. (A 11)

—jv

As discussed in I, this equation has only real roots; and it reduces, through the
substitution of an appropriate asymptotic form, to a simpler transcendental
equation (24), which may be solved for o,, using a straightforward iterative
technique. By setting

N =V (k%= D7) (A 12a)
the residue can be expressed as
) (2)
Rm — pm H—,]u(nm ZI)H]V (gm Z2) (A 13)

IH(—lj)u(nZs)J;)=pm H;E)(gm Zs) ,

where the prime denotes differentiation with respect to p.
From the uniform asymptotic form in (26), the derivative of the Hankel function
in (A 13) is found to be

[HY,(2) ey, = (=)™ o721/ (2/1) 2,072 v/ (k2 22+ 0%,) (P — 02 )i (A 14)

The Hankel function of the second kind in the denominator of (A 13) shows a zero
at p = p}. On expanding H{?({,, z,) to first order in a Taylor series about p},, and
recognizing that for vanishingly small §/|k.| the coefficient of the first-order term is
the conjugate of the expression on the right of (A 14), we find that at p = p,,

HP (G 2) = (P —ph) (— )™ €721/ (2/1) 032 2 v/ (K, 22+ 0%,) (=% )i (A 15)
It follows from (A 10), since o, is real, that for g/|k, | < 1,
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On combining (A 13) to (A 16), the expression for the mode sum, L,, becomes

_ S S T p e £ HO) (i £) A7

Skooﬁzgm=1\/(vz_0'3n) —ju] m o1 “\J0m S2) ( )
where £, , are normalized sensor depths, as defined in (21).

The presence of the absorption coefficient, £, in the denominator of (A 17) is
obviously the origin of the infinity in the cross-spectrum of the noise in a lossless
ocean. Elsewhere in (A 17) f is negligible and k_ may be treated as real. When the
above expressions for L,, L, and L, are substituted into (A 8) for the integral I,,, we
obtain immediately the formulation of the cross-spectral density given in (20).

L, =

Appendix B. The special case of an isovelocity ocean

When A = 0 the expression for the sound speed in (1) is independent of the depth
coordinate z and hence, under this special condition, the inverse-square profile
represents an isovelocity ocean. In this case, the general inverse-square result in (20)
should reduce to the known form for the vertical cross-spectral density of surface
generated ambient noise in an ocean whose sound speed is independent of depth. The
following argument demonstrates that this requirement is indeed satisfied.

From (22) it follows that v = §j when & = 0. The characteristic equation (23) then
has no roots, implying that the normal mode component of the noise, L,, is
identically zero. The remaining two components, L., and L,, corresponding to the two
integrals in (20), involve Hankel functions of order +jv = +31 which can be
expressed exactly in terms of elementary functions:

HP(2) = —j v/ (2/m) exp (ja) (B La)
and JH® (x) = HP (x) = j v/ (2/nx) exp (—j). (B 1b)
On substituting these identities into the two integrals in (20), we find that

2 Koo .
L, = \/(2122>J; nexp (—jnd)dy, (B 2a)
L= zz)fnexp(—jﬂa) a, (B 20)
where A=2z—2y; a=(2,+2,—22). (B 3)

Both of the expressions in (B 2) can be evaluated analytically, the first by
straightforward integration, which yields

_ 2 sin (k, 4) | cos(k,4)—1| .|cos(k,4) sin(k,4)
(] I o T v ] o o MR

This expression represents a downward travelling noise field, in which the noise
power shows an (unique) angular dependence of the form cos(¢), where ¢ is the
vertical angle measured from the zenith. Such a directional density function is
representative of a noise field generated by a surface distribution of dipoles
(Buckingham 1990a).

Partial integration cannot be applied to the integral for L, because of convergence
problems, but it can be evaluated with the aid of the theory of generalized functions.
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The technique is to express the integrand as a derivative with respect to the
parameter ¢ and then interchange the order of integration and differentiation:

2 ® . .2 d (® .
L2=~——J neXP(—Jan>dn=J—s-J exp (—jan)dy

\/(z1z2) 0 (zlzz)da 0
_o& d I | A B
’Jv<z1z2)da{“6(“) a}‘lwzlzz){ " +a2}
ze 1
T Ve 2

where the delta function in the final expression has been omitted since it is zero
whenever either sensor lies below the surface (i.e. when a # 0). The integration of the
exponential function over semi-infinite limits in (B 5) has been performed using the
properties of Fourier transforms (for the cosine component) and Hilbert transforms
(for the sine component).

On combining the results in (B 4) and (B 5), the expression for the cross-spectral
density of the noise in (20) reduces to

(8150, 21, 25)) = pQ(w) (k,,d")?/m

sin (k,, 4)  cos(k,A)—1| .|cos(k,4) sin(k,4) 1 .
X{[ b d T (kA ] [ oA (kA ]Ukiodz}’ (B6)

where d = 2a is the mean depth (beneath the surface) of the two sensors. It is clear
from (B 6) that L, represents a noise component that is spatially inhomogeneous but
negligible at depths greater than a wavelength or so beneath the surface. The
contribution from L,, on the other hand, is spatially homogeneous since it involves
only the sensor separation, 4, and not the sensor depths separately. The expression
in (B 6) corresponds exactly with the known form for the (vertical) cross-spectral
density of ambient noise in an isovelocity profile (Buckingham 1990a), thus
providing a useful check on the general inverse-square result in (20).
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